
DSENDS: Multi-mission Flight Dynamics Simulator

for NASA Missions

Jonathan Cameron∗, Abhi Jain, Dan Burkhart, Erik Bailey, Bob Balaram,

Eugene Bonfiglio, H̊avard Grip, Mark Ivanov, Evgeniy Sklyanskiy

Jet Propulsion Laboratory, California Institute of Technology

4800 Oak Grove Drive, Pasadena, CA 91109

Increasingly complex space missions require powerful and flexible simulation environ-
ments in order to design, analyze, and operate the missions. NASA’s Jet Propulsion
Laboratory has created the DSENDS simulation environment that addresses these needs
for a wide range of space missions. In this paper, we describe the DSENDS simulation envi-
ronment and the key architectural components that make DSENDS a useful simulation and
analysis framework. We also overview a variety of NASA missions and flight experiments
that are using DSENDS.

Nomenclature

ARRM Asteroid Rendezvous Robotic Mission, also known as Asteroid Redirect Mission (ARM)
COMPASS Core Operations, Mission Planning, and Analysis Spacecraft Simulation
DEM Digital Elevation Map
DSENDS Dynamics Simulator for Entry, Descent and Surface landing
EDL Entry, Descent, Landing
GNC Guidance, Navigation, and Control
LDSD Low-Density Supersonic Decelerator
MDNAV Mission Design and Navigation
MSL Mars Science Laboratory
RCS Reaction Control System
SIAD Supersonic Inflatable Aerodynamic Decelerator
SLS Space Launch System

I. Introduction

Closed-loop flight dynamics simulations play a critical role in the development of flight mission concepts
and flight systems, and during mission operations. With the increasing complexity of flight systems, high-
fidelity simulations can be complex and expensive to develop. Dynamics Simulator for Entry, Descent and
Surface Landing (DSENDS) is a multi-mission flight dynamics modeling and simulation tool developed for
modeling of atmospheric Entry, Descent, and Landing (EDL) spacecraft at the DARTS Lab at NASA’s Jet
Propulsion Laboratory (JPL).1 The goal of DSENDS is to promote simulation model reuse and manage
simulation complexity, while addressing the diverse fidelity and high-performance needs for mission applica-
tions. Although DSENDS has roots as far back as the Cassini space probe in the early 1990s, DSENDS has
evolved significantly in recent years and includes new and versatile features to enable application to many
types of space missions.

DSENDS has been, and is currently in active use by several flight missions and technology development
efforts including the Mars Phoenix, Mars Science Lab (MSL), InSight landers, the Low-Density Supersonic

∗Senior Member of Technical Staff, Mobility and Robotics System Section

1 of 18

American Institute of Aeronautics and Astronautics

Decelerator (LDSD) technology demonstrator, precision landing technology development and asteroid re-
trieval mission concept development (ARRM).2,3 A recent collaboration with Johnson Space Center (JSC)
Flight Operations Directorate team uses DSENDS as a foundational toolkit for ascent, descent, and ren-
dezvous operations for the International Space Station (ISS), Space Launch System (SLS) and future flight
missions.

In this paper we describe key architectural features of DSENDS that enable its multi-mission use and
several case studies that illustrate its application. While DSENDS simulations use C++ for fast performance
speed, an extensive Python front-end provides analysts and developers with a convenient and sophisticated
command line and scripting environment. The organizing structure for simulations within DSENDS is a
hierarchy of object-oriented and configurable assemblies. Assemblies represent functional subsystems which
can be contained within other assemblies, and can contain sub-assemblies of their own. For instance, a
spacecraft assembly may contain assemblies for sensors, actuators, fuel manifolds, and these in turn can con-
tain sub-assemblies for thrusters, valves, etc. The assemblies are configurable and parameterized to support
a variety of configurations and parameter needs. Individual assemblies can be unit tested independently
before use within simulations. Assemblies are responsible for the creation of component models, bodies,
nodes and frames and setting up the data-flow between models. They also provide a home for sub-system
specific methods. We provide an overview of key assemblies in the DSENDS library that are available for
mission-specific simulation development.

The DSENDS simulation environment is one of a family of application domains that build upon the
Dshell simulation framework.4 The key simulation domains supported by Dshell framework are shown in
Figure 1 and include robotics (RoboDarts5), ground vehicle simulations (ROAMS 6), and spacecraft simu-
lations (DSENDS). Although this paper focuses on DSENDS, the architecture under girding DSENDS is
common to all of these applications and the component models from the different domains are interoperable.

Figure 1. DARTS Lab Multi-Domain Simulations

The first part of this paper describes some of the main features of the current version of the Dshell
framework and details of specific adaptations for DSENDS. In the second part of this paper we present
an overview of key mission uses of the DSENDS toolkit including NASA flight missions such as ISS, Space

2 of 18

American Institute of Aeronautics and Astronautics

Launch System (SLS), MSL, Phoenix, Insight, and ARRM missions. For further details of the use of DSENDS
and related software, please see the DARTS Lab publication list.7

II. Dshell Simulation Framework

DSENDS and related robotics and ground vehicle simulations make use of Dshell framework features
such as: applicability to a wide range of systems, re-usability of components, object-oriented design, fast
simulation speed, extensive read/write access to simulation variables, portability, modularity, etc. Dshell
includes several core component layers illustrated in Figure 2. At the center of this figure is the Dshell
module that handles numerical integration, model creation, managing and executing a model data-flow at
run-time, etc. Dshell relies on modules such as Dspace for visualization, SimScape for terrain models, DARTS
for multibody dynamics models, and a library of reusable component Dshell models. DARTS uses algorithms
from the Spatial Operator Algebra multibody dynamics methodology8 for solving the equations of motion
and related dynamics computations. In the rest of this section we describe some of these modules that are
part of the Dshell framework.

Figure 2. DARTS Lab Simulation Architecture

II.A. Frames

Coordinate systems are an essential part of any physical simulation. For instance, there is usually a global
reference coordinate system for any simulation. Bodies require a reference coordinate system in which the
moments of inertia are defined. Bodies typically have points of interest which we call “nodes” for locations
such as a body’s center of mass, points where forces can be applied, or points where positions and velocities
are needed. Determining the relative positions and velocities between various locations and coordinate
systems is an operation that is often needed.

3 of 18

American Institute of Aeronautics and Astronautics

Figure 3. All points of interest in the simulations are
types of Frames

The Dshell system defines a frame class as a coordinate
system having its origin at a specific location. Further,
Dshell defines bodies, sensor/actuator nodes, planetary
bodies, and other points of interest as specializations of
frames (as shown in Figure 3). Frames are a foundational
layer of the Dshell simulation environment and Dshell im-
plements a tree of all the frames in the simulation. Since
all of the frames are part of the same tree, it is straightfor-
ward to traverse the connecting path in the tree between
any pair of frames to compute the relative transform (po-
sition with rotation), velocity, and acceleration between two frames regardless of whether they represent
bodies, nodes, planetary bodies, or other types of frames. Since the relative frame API is simple and consis-
tent, the need for user code for computing relative transforms and related quantities is significantly reduced
and eliminates this source of error and the burden of validating the corresponding code.

The frame tree uses lazy evaluation to make the computations very efficient. In other words, the relative
transforms between frames are only computed on demand, and only if the cached values are stale. For
example, the relative position between two adjacent limbs in a multi-limb robotic arm depends only upon
the relative joint angle for the two limbs. The transform between the two limbs is unchanged and can be
cached and used until the joint angle changes. In the event that the joint angles change, the transform
is recomputed when the relative transform is requested. Any subsequent relative frame computations that
traverse that joint can use the cached relative transform without recomputing it.

II.B. DARTS multibody dynamics

A key backbone module for the Dshell simulator is the DARTS multibody dynamics module for solving
the equations of motion.8 DARTS creates an instance of the multibody world which is populated with
component bodies by individual Dshell assemblies. The bodies are organized into a topological graph.

Figure 4. DARTS multibody dynamics solver.

One of the salient features of DARTS is its
use of a minimal coordinates formulation for
the multibody dynamics model. The mini-
mal coordinates approach results in a dynam-
ics model of small size when compared with the
more commonly used absolute coordinates dy-
namics models. A significant advantage of the
minimal coordinates model is that most of the
inter-body articulation constraints are elimi-
nated from the dynamics model, and this typ-
ically allows for the use of ordinary differential
equation solvers instead of the more complex
differential-algebraic solvers and constraint er-
ror management techniques required with ab-
solute coordinate modeling approach. The ap-
parent hurdle presented by the added complexity of the minimal coordinates model is handled by the use of
the theory and algorithms from the Spatial Operator Algebra (SOA) methodology8 that provides low-cost,
O(N) structure-based algorithms that are the fastest available for solving the multibody equations of mo-
tion. These algorithms extend to rigid as well as deformable bodies. For multibody systems with internal
loops, the system has graph instead of tree topology, DARTS includes an implementation of the novel con-
straint embedding technique that allows the use of the ordinary differential equation methods even for these
systems.9 DARTS also has dynamics solvers for non-smooth dynamics for contact and collision dynamics.

DARTS allows for topological changes to the multibody model during run-time from the detachment
and attachment of bodies, as well as the deletion and creation of bodies. The structure-based nature of
the DARTS algorithms allows them to seamlessly adapt to such topological changes. The structure-based
nature of the dynamics algorithms also allows the easy restriction of the operation of dynamics computations
to “subgraphs” of the overall multibody model. This can be very useful for restricting computations to
individual vehicles in a multi-vehicle simulation or to component sub-assemblies such as robotic arms or
propulsion systems.

4 of 18

American Institute of Aeronautics and Astronautics

II.C. Dshell component models library

Dshell models are one of the key building blocks of Dshell simulations. Dshell models are low-level, component

Figure 5. Dshell models and signals

simulation models that interact with the DARTS multibody
system or model subsystems independent of the multibody sys-
tem (such as a battery). System devices such as thrusters,
IMUs, encoders, spring-dampers, etc. are typically modeled as
individual Dshell models. Models are interconnected to form
a data-flow (see Figure 5). The execution of the data-flow at
run-time is carried out by a sequential execution of the model
methods. The connectivity between the models determines the
model execution order (so that upstream models are evaluated
before downstream models). When the model inter-connections
form a closed loop, the user can define a virtual cut to allow the
model sorting to determine the model execution order. Dshell
models are written in C++ for fast execution speed and sup-
port user defined parameters, inputs, outputs, scratch variables, discrete states, and continuous states. The
Dshell model C++ code builds upon a layer of auto-generated C++ boiler-plate code for peeking/poking at
model variables, selecting model verbosity, state rollback, etc.

Dshell models are initialized by parameters provided by the user during simulation setup. Dshell models
use “signals” to send data between Dshell models as shown in Figure 5. Signal data can be accessed by users
for inspection and logging and for setting their values.

Dshell models contain instances of body nodes and hinges that they are attached to, to allow them to
interact with the multibody dynamics model. The models can obtain location and state information from
the nodes and hinges, and, in turn, apply forces and torques at these nodes and hinges. The narrow interface
between the Dshell models and the DARTS body instances helps compartmentalize and modularize the model
implementations, and avoid added complexity from unnecessary cross-coupling across the device models and
the DARTS multibody dynamics model.

II.D. Subsystem Assemblies

Although it is possible to create a full simulation by creating individual component Dshell models,

Figure 6. Example assembly hierarchy for a Dshell simulation

this can be a complex and error prone
process due to the large number of mod-
els and inter-connects for even moderate
size simulations. Dshell uses Assemblies
to organize and simplify the creation of
complex simulations. In contrast with
Dshell models which represent are low-
level models, assemblies represent higher-
level reusable models that are containers
for multiple bodies, Dshell models, sig-
nals and other sub-assemblies. Figure 6
describes the decomposition of an exam-
ple simulation involving multiple space-
craft into a hierarchy of assemblies. Note
that the multiple thrusters and fuel tanks
are multiple instances of the respective
thruster and fuel tank assembly classes.

Assemblies use input configuration
data to for selecting variations of mod-
els created by the Assembly and the topology of the constructed models. For instance, the ThrusterSet
assembly receives configuration information about the types and number of thrusters. It then loops through
and creates a Thruster assembly for each of the thrusters. In the process, the ThrusterSet assembly passes
the thruster type down to each Thruster assembly as configuration data. Each Thruster assembly then
constructs the desired thruster and connects its input and output signals appropriately.

5 of 18

American Institute of Aeronautics and Astronautics

Assemblies also use context data to define how the assembly relates to it parents assembly, models, and
bodies. For instance, the ThrusterSet assembly passes a unique DARTS node object as context input to each
child Thruster assembly that is used as an attachment point for the thruster.

Once the full simulation is constructed, parameters are used to set Dshell model parameters values. Since
assemblies are hierarchical each assembly is responsible for using its input parameters and passing on selected
parts to its children assemblies. Thus the ThrusterSet assembly uses its input parameter data to update the
parameters of its own Dshell models, and passes parameter data down to its children Thruster subassemblies
so that they can update their Dshell model parameters. This process also helps manage the parameter fan-
out process so that parameter variables that are shared by multiple assemblies only need to be updated in
one place at the upper level assembly instead of at each of the lower-level assemblies.

Thus assemblies have the desirable software characteristics of encapsulation, information hiding and
modularity that not only simplify the modeling complex systems, but also enhance re-usability by providing
a well defined interface to their contained models and sub-assemblies and making them easier to use by other
higher-level assemblies. Assemblies can also be unit tested for desired behavior prior to using within larger
simulations.

II.E. DVar data access

An important capability of any simulation is the ability to read or modify data variables within the simulation.
Dshell simulations involve a large set of data variables that users need to access within simulations. A common
need is for logging and/or plotting data from simulations for analysis. Also, a user may need to initialize or
modify data variables during run-time.

Reading and modifying data variables within the simulation in a uniform way is made possible using the
DVar data access layer within Dshell. DVar provides a data tree that includes all simulation data variables.
The location of each data item in the DVar tree is represented by an “address”, a unique dot-separated
string identifier that can be used to access the data variables. The DVar data access layer supports normal
read and write operations for the data variable.

The types of data variables that automatically get registered in the DVar data tree include all DARTS
multibody variables; all Dshell model scratch, state, and parameter variables, as well as all signals. The
uniformity of the DVar data representation makes it easy to access DVar objects for reading, modifying,
logging, run-time data plotting, introspection, and population of graphical user panels in a convenient and
consistent way.

II.F. SimScape terrain models

Dshell uses a terrain modeling toolkit called SimScape to model planetary bodies, local terrain patches,

Figure 7. SimScape terrain environment toolkit to facilitate
the use of terrain models in a range of simulation applica-
tions.

DEMs (digital elevation maps) and irregular shapes
(such as asteroids) using meshes.10 SimScape has
two primary purposes: (1) to provide tools to im-
port terrain data from a wide range of sources into
terrain models that Dshell simulations can use at
run-time (see Figure 7); and (2) to provide a library
used at run-time to support loading terrains and ex-
ecute queries for topography of terrains, intersection
of rays with terrain surfaces, slopes, visualization,
and more. SimScape is often used in Dshell simula-
tions to model spacecraft sensors such as LIDARs,
cameras, altimeters and proximity sensors as well
as for landing and terrain interaction models. Sim-
Scape stores its terrain data using the Hierarchical
Data Format (HDF5) data storage format for effi-
cient and flexible access.11 The HDF5 data format is hierarchical and allows SimScape to deal with large data
sets since selected data slices can be loaded efficiently on demand at run-time. HDF5 supports “striding”,
accessing every nth row or column of data to sub-sample the data.

6 of 18

American Institute of Aeronautics and Astronautics

II.G. Geometry Data and Visualization

Figure 8. The DScene geometry manager and example ge-
ometry client modules.

Simulations often need geometry data for the vari-
ous bodies in the system for visualization as well as
collision and contact dynamics computations. A ge-
ometry manager module, called DScene, is used by
Dshell to isolate the main simulation from the con-
sumer modules. The simulation defines geometrical
shapes for the component bodies via shape primi-
tive such as cuboids, cylinders, etc. as well as via
general mesh formats used by graphics applications.
DScene supports a plugin architecture where geom-
etry consumers can register themselves with DScene
as shown in Figure 8. The plugin architecture allows
Dshell simulations to to add in new geometry ma-
nipulation modules with custom interfaces without
impacting the core Dshell simulation itself. At run
time DScene creates a corresponding geometry world in each of the registered plugin clients, and syncs up
their positions and orientations with that in the simulation world.

One such DScene plugin in the Dshell environment supports 3D graphics visualization and is called
Dspace. Dspace is implemented using the Ogre3D open-source visualization library that is also used in
gaming applications.12 For collision detection, Dshell uses a DScene plugin based on the open source Bullet
engine.13 Dshell also supports using DScene geometry plugins for higher-fidelity visualization based on
ray-tracing techniques.

For large SimScape terrain models, Dspace includes a GPU-based continuous level of detail algorithm for
seamlessly managing the rendered polygon count for the smooth real-time visualization of the terrain data.14

II.H. Simulation Infrastructure

Dshell implements all run-time code in C++ for best performance. For convenience and flexibility, Dshell uses

Figure 9. SWIG generates
Python bindings for Dshell
C++ classes

the Python interface for constructing the simulation, gluing together all the
C++ parts, and initializing all the run-time parameters. This is made possible
by using the SWIG15 tool that takes C++ headers and auto-generates Python
binding code for accessing C++ objects and functions from Python (Figure 9).
Even though much of the simulation setup is done in Python, the Dshell sim-
ulation can be configured as a stand-along C++ library with API calls so that
it can be embedding into other run-time environments. Also, external C, C++
and FORTRAN libraries can also be linked into Dshell models.

The Dshell simulation can be run as a server, with an external process
controlling the Dshell simulation functions. Dshell can also be run as a client
to interact with external server programs such as Matlab. Dshell includes a wide
range of numerical integrators, from simple fixed-step Runge-Kutta to variable-
step ordinary differential equation integrators as well as differential algebraic
equation solvers for systems with constraints. Dshell provides integrators for
smooth problems as well as integrators suitable for stiff problems. Dshell also
provides explicit and implicit integrators as well as propagators for non-smooth contact dynamics.

III. DSENDS

The DSENDS simulator builds upon the Dshell framework, and contains a wide range of models and
assemblies to support space missions including thrusters, fuel tanks, gravity, aerodynamics, spring-dampers,
motors, encoders, IMUs, cameras, robotic arms, and more. An overview of some of the available assemblies is
shown in Table 1. In applications to specific missions, these generic assemblies and associated Dshell models
are typically tailored for the specific needs of missions.

7 of 18

American Institute of Aeronautics and Astronautics

Table 1. Examples of supported generic assemblies for DSENDS simulations

Assembly type Description

General

Vehicle Creates a spacecraft vehicle (with support for a variety of space-
craft functionality)

Mechanisms

Arm Creates a robotic multi-link arm

Encoder Adds an encoder assembly to a joint

ExternalDisturbanceActuator Adds a user specified disturbance force and torque on a specific
node on a body in the simulation

ExternalDisturbanceMotor Adds a user-specified disturbance to joint torques or forces

Link Creates a single link of an arm or a serial link mechanism

Motor Adds a “motor” model to control the behavior of a joint. This
assembly supports a number of different motor types including
DC motors, prescribed motion, spring-dampers, and gearing.

PIDController Creates a PID controller

ProfileUnit Implements a joint motor that moves the joint through a trape-
zoidal profile

Environment

Site Provides information about the terrain surface site such as loca-
tion

Target Base for various target assemblies. “Targets” refer to the plane-
tary body that is the landing target.

TargetSpice Creates a planetary body associated with predetermined
orbital motion that is controlled by NAIF Spice (see
http://naif.jpl.nasa.gov/naif/)

Aerodynamics

Aerodynamics General-purpose aerodynamics

Atmosphere Adds spline-based atmospheric profiles

SplineWind Adds a spline-based wind model

Gravity

ConstantGravity Adds constant user-provided gravity

AsphericalGravity Gravity model for non-spherical planetary bodies using “J” terms

GeneralGravity Allows the user to specify changing gravity using signals

PolyhedronGravity Gravity model for an irregular body defined by a polyhedral mesh

IMU

IMU Adds a basic IMU

NoisyIMU Adds an IMU with noise characteristics

Propulsion

FuelManifold Connects fuel tanks and thrusters

FuelTank Fuel tank that changes mass properties as fuel is used

PropulsionSystem Constructs a full propulsion system with fuel tanks, manifolds,
and thrusters

ThrusterFixed Fixed-thrust thrusters with on-off inputs

ThrusterThrottled Variable-thrust thrusters with thrust level inputs

ThrusterSet Constructs a set of thrusters with similar characteristics

8 of 18

American Institute of Aeronautics and Astronautics

III.A. DSENDS Testing and Validation

The DSENDS environment is covered by a large regression test suite. The tests range from low-level (unit)
tests to many system level tests. Some of these tests are in C++ but most are python test scripts.

The DSENDS environment has been validated in several ways. The basic aerodynamics functionality has
been validated several ways against the POST2 simulation tool (from Langley Research Center).16 Various
other parts of the DSENDS environment have been validated against other aerospace simulation tools.
Finally, the DSENDS has been validated by several Mars and in Earth lander missions.

IV. Applications of DSENDS

In the following sections, we describe several applications of DSENDS to NASA missions and flight
experiments. These examples illustrate the use of DSENDS in a variety of mission phases including planning,
design, implementation, and operations.

IV.A. COMPASS

Over the last five years, JPL has collaborated with the Flight Dynamics Division (FDD) within the Flight
Operations Directorate (FOD) at NASA’s Johnson Space Center. The collaboration started at the end of
the Shuttle program when the FDD team needed a new simulation architecture to meet evolving future
needs. The FDD team started with DSENDS and added their domain-specific models to create a tool called
COMPASS.17 COMPASS is used to provide flight-operations tools for the International Space Station, future
Exploration Missions, and beyond.

The collaborative partnership between JPL DARTS Lab and the JSC FOD team has proved to be very
beneficial for everyone for two important reasons. First, since COMPASS is based on DSENDS, FDD has
benefited from previous and active JPL development and maintenance. Secondly, improvements to DSENDS
required by FDD to support operational needs have resulted in new simulation capabilities while improving
the current framework.

IV.B. Mars Science Laboratory

The most recent planetary science mission to Mars was Mars Science Laboratory (MSL) with the Curiosity
rover, which launched November 26, 2011 and landed at Gale Crater on August 6, 2012. Curiosity is a rover
with a significantly larger and more advanced landing payload than any previous Mars lander mission. In
addition, MSL was the first use at Mars of a complete closed-loop entry Guidance Navigation and Control
(GN&C) system, including guided entry with a lifting body (via center of gravity offset) to greatly reduce
dispersions during the Entry, Descent and Landing (EDL) phase. The hyper-sonic entry guidance enables
the entry body to fly out the remnant delivery error from the final Trajectory Correction Maneuver (TCM)
and other sources, resulting in less than a 25 km 20 km landing error relative to the selected Gale Crater
landing target.

The JPL MSL EDL trajectory analysis team had two major simulation actions for operations. The first
was high-fidelity trajectory and simulation verification analysis of the POST2 simulation from the Langley
Research Center, the primary performance simulation tool for MSL EDL analysis.18,19 This verification
analysis required including the full suite of EDL simulation models including dispersed inputs for Monte
Carlo analysis of EDL. The second was EDL trajectory simulation to support cruise TCM targeting and
maneuver design, which required modeling of the EDL dynamics without closed-loop GNC. Both are covered
in the following section. The simulation chosen for MSL was DSENDS. DSENDS provides the framework for
modeling various aero-assisted simulations (EDL, aero-braking and aero-capture) with varying complexity
from simple systems with single bodies and 3 degrees-of-freedom (DOF) dynamics to multibody, flexible
systems.

IV.B.1. MSL Verification and Validation (V&V)

One role of the DSENDS simulation for MSL was an independent verification and validation (V&V) of
POST2, the primary performance simulation, from EDL start to parachute deploy. This was a natural end
point for a de-scoped cross-check because the full-fidelity modeling through parachute deploy was mostly
the same functionality required for other roles such as cruise maneuver targeting. As described in Burkhart

9 of 18

American Institute of Aeronautics and Astronautics

2013,20 the DSENDS simulation included the highest fidelity models for all required functionality through
parachute deploy and therefore provide equivalent functionality. A parachute deploy comparison of a Monte
Carlo solution for both simulations is shown in Figure 10. The result shows good agreement in the size
and orientation of the dispersed points, with a slight downrange shift in the DSENDS derived ellipse of
400m relative to the POST2 ellipse. One factor contributing to the difference was attitude dispersion, which
was done differently by each simulation at run time. Since the differences were acceptable to the project,
no further work was done to quantify them. The MSL project concluded that the independent V&V was
successful based on these results.

Figure 10. Comparisons of DSENDS (blue) and POST2 (red) Monte Carlo dispersions at parachute deploy for Mars
Science Laboratory

IV.B.2. MSL Operations

The V&V analysis described above is a significant part of the operations tasks for the simulation team,
specifically for Monte Carlo analysis. During operations, analysis of expected landed performance was
performed as needed when the entry conditions changed significantly. Additional tasks were performed using
the DSENDS simulation for operations, as described in Burkhart 2012.21 One of these tasks is targeting,
which uses an open-loop EDL setup in DSENDS in concert with interplanetary trajectory propagation tools
to design cruise maneuvers that achieve a desired landing point on Mars. Compared with the full-fidelity
simulation above, the open-loop simulation does not include closed-loop GN&C models and defines the
capsule attitude during entry via trim aerodynamics. A related task is cruise stage re-contact analysis,
which uses the open-loop DSENDS setup along with a propagation model for the cruise stage to compute
how the cruise stage breaks up in the Martian atmosphere and propagate the components. Trajectories of
the capsule and the various cruise stage parts are compared to verify that there is no re-contact. A final
related task, used on landing day, was the monitoring of real-time radiometric data to detect EDL events.
Events that impart a significant velocity change along the Earth line will be visible as discontinuities or
slope changes in the Doppler data. This includes known events, such as separations and ejections of mass,
antenna changes, thruster activity, drag due to atmospheric entry and parachute deploy as well as unexpected
velocity changes. The open-loop DSENDS setup was used with varying degrees of model fidelity to generate
a reference Doppler data profile that was used on landing day to compute Doppler residuals used to detect
events.

10 of 18

American Institute of Aeronautics and Astronautics

One comparison models the entry phase with atmospheric drag and vertical lift but does not include
out-of-plane lift, the parachute, nor any other events after parachute deploy (no heat shield release or
powered flight) but instead models flight in the capsule configuration to impact. These residuals are shown
in Figure 11.

Figure 11. Real-time Doppler from entry to occultation, prediction with drag and vertical lift only. Bank reversals,
SUFR (Straighten Up and Fly Right), parachute deploy and heat shield release are noted.

On the day of the flight experiments, a GNC monitoring console was used to monitor telemetry and display
current spacecraft configurations using data from live telemetry.22 This console is shown in Figure 12.

IV.C. Phoenix and Insight Missions

On both Phoenix and InSight Mars missions, DSENDS was used for maneuver design, landing dispersion
analysis, and trajectory targeting.23 Both landers are very similar and the application of DSENDS on these
two projects is equally similar. EDL Systems design was conducted using POST2.24–27 Phoenix and InSight
do not use any entry guidance, the trajectories are largely uncontrolled up until powered descent, and the
touchdown ellipses are on the order of 100 km, along-track, for both missions. Because of this and because
it was not used for EDL systems design, the DSENDS simulation had significantly lower requirements than
a mission such as MSL might.

The EDL simulation in DSENDS differs from POST2 in that it does not attempt to model the EDL
system to the level of fidelity that is modeled in POST2. While the simulation does have an accurate 6-
DOF model of the trajectory through parachute deploy that has been verified against POST2, it only has
an engineering model of certain parts of the flight software, which were relevant to accurately predicting
landing location. (Namely, the parachute-deploy triggers and separation of the lander from the parachute
were modeled for Phoenix and Insight.) The parachute deploy trigger in the DSENDS simulation is very
similar to that used by actual flight software, although the lander separation was commanded at a constant
1000-meter altitude for Phoenix and using a simple gravity-turn model for InSight.

11 of 18

American Institute of Aeronautics and Astronautics

Figure 12. Mission Operations Telemetry Monitoring Console, Created Using DSENDS. Events are highlighted on the
left as they occur. Spacecraft configurations are updated based on live telemetry.

DSENDS does not model the reaction control system (RCS) on the Phoenix spacecraft. This is not
necessary because the attitude and attitude rate error dead bands in the flight software are increased to
the point that there is almost no chance of the RCS thrusters firing during the hyper-sonic phase. The
simulation has no IMU or radar modeling in DSENDS and, therefore, assumes perfect knowledge for all of
the major events during the EDL trajectory. Finally, the descent thrusters were not modeled for Phoenix
because the distance traveled over the ground during the near-vertical propulsive phase is insignificant. Table
3 is a comparison of POST2 and DSENDS that was presented at a certification review from Phoenix. This

Table 2. Examples of supported generic assemblies for DSENDS simulations

comparison is for a Monte Carlo run performed in both DSENDS and POST2 during the development phase.
The comparison clearly shows the differences between the two tools (-300 meters) are minor compared to
the size of the landing ellipse (-103 km). Figure 13 shows an overview of the Phoenix Entry Decent and
Landing profile.

The inputs in the Monte Carlo runs capture all of the dispersions known to have a significant impact on
the landing location and ellipse size. The Monte Carlo runs consists of a nominal run and 2000 dispersed runs,
each with an independent set of dispersed inputs. For both Phoenix and InSight missions, DSENDS became
an official Mission Design and Navigation (MDNAV)/EDL targeting tool. For the InSight mission in par-

12 of 18

American Institute of Aeronautics and Astronautics

Figure 13. Phoenix EDL Time Line

ticular, the way in which DSENDS was used was substantially enhanced with the direct MONTE/DSENDS
software integration. MONTE,28–30 is a certified navigation and mission analysis trajectory program directly
calls DSENDS for an integrated interplanetary and EDL targeting at the fixed landing location on Mars.
Figure 14 illustrates the entry targeting algorithm which takes an initial guess for the B-plane angle and entry
epoch, then iterates with DSENDS to solve for landing latitude and longitude. The targeting is completed
when the change in the entry time and B-plane angle are within the design tolerance. In addition to the
MDNAV support for InSight, DSENDS became the primary software for the landing site hazard assessment.
Its role became crucial during the TCM design and the final decisions on the maneuver execution. The
output of the DSENDS EDL Monte Carlo analysis produced a set of dispersed landing points on the ground
which via LSAT (Landing Site Assessment Tool, a MONTE-based package) allowed the tool to compute the
probability of the successful landing and monitor the shift in the mean landing target before and after the
trajectory maneuver. Figure 15 illustrates a typical InSight landing hazard assessment analysis graph, which
was frequently used in the critical TCM decision-making process.

IV.D. LDSD/SIAD

In 2012, NASA initiated the Low-Density Supersonic Decelerators (LDSD) project to develop a new genera-
tion of supersonic aerodynamic decelerators: 6-m and 8-m Supersonic Inflatable Aerodynamic Decelerators
(SIADs), and a large, 30.5-m, supersonic parachute.31 As part of the LDSD project, several new ground-
based test architectures were developed for performing structural testing of the decelerators. However, to
fully evaluate deployment, inflation, and supersonic and subsonic aerodynamic behaviors, a full-scale flight
test was required at conditions relevant to how the technologies would be utilized at Mars. The test archi-
tecture is outlined in Figure 16.

For a nominal mission, a large helium balloon is used to hoist a 4.7-m diameter blunt body Test Vehicle
(TV) to an altitude of over 36 km above Hawaii. The test vehicle is released from the balloon, spun-
up for stability, and a STAR 48 solid rocket motor is ignited. The motor accelerates the test vehicle to
approximately Mach 4 and an altitude of 52 km. Upon burn-out, the vehicle is de-spun and the primary test
phase begins. Shortly thereafter, the first of the technologies, a SIAD is deployed. Later in the flight, the
ballute or Parachute Deployment Device (PDD) is mortar-fired, inflated, and subsequently used as a pilot

13 of 18

American Institute of Aeronautics and Astronautics

Figure 14. InSight Mission Design / Navigation Targeting Overview

Figure 15. InSight Landing Hazard Assessment Analysis with DSENDS landing points

14 of 18

American Institute of Aeronautics and Astronautics

Figure 16. Low Density Supersonic Decelerator Flight Profile. These flight experiments were performed at high
altitudes above Hawaii to simulate Mars supersonic entry conditions.

device to extract and deploy a large supersonic parachute from the test vehicle. The parachute decelerates
the vehicle to subsonic conditions and the vehicle descends to the ocean for recovery.

DSENDS was used during all phases of the project to perform Test Vehicle flight simulations in support
of systems design, systems analysis, and flight operations. DSENDS was utilized in a full 6-DOF mode with
the integration of the following models: propulsion, atmosphere, h/w configuration, aerodynamics, flight
software, and geophysical. Both nominal and dispersed/uncertainty simulations were performed. Nominal
simulations provided critical insight for initial design and trajectory studies. Uncertainty analysis was
performed to define TV hardware build tolerances, flight dynamics robustness, and range safety splashdown
footprints. DSENDS was used to develop targeting data necessary to aim the vehicle to within range safety
clearance areas. Finally, DSENDS was used to visualize telemetry data during the actual flight experiments22

as shown in Figure 17.

IV.E. Asteroid Redirect Robotic Mission

Figure 18. Asteroid Capture. DSENDS
was used to study the dynamics of the as-
teroid capture process using a trampoline
capture device.

The Asteroid Redirect Robotic Mission is a proposed NASA mission
aimed at collecting a large boulder from the surface of a near-Earth
asteroid and bringing it into lunar orbit. A second, crewed phase
of the mission would allow human astronauts to inspect and sample
the boulder while in lunar orbit. During early phases of mission
planning, the option of capturing an entire asteroid - measuring up to
13 m in diameter and weighing up to 1000 metric tons - was studied
in detail. The capture system in this case would have consisted of
a large, flexible bagging mechanism attached to the main spacecraft
bus, capable of completely encapsulating and securing the target
asteroid. DSENDS was used extensively to study the dynamics of
the capture problem, as part of the design process for the capture
mechanism itself and the associated guidance, navigation and control
architecture.3,32 A visualization of the DSENDS simulation for this
analysis is shown in Figure 18.

The capture problem is complicated due to the relatively high
expected rotation rate of the target asteroid and the likely tendency

15 of 18

American Institute of Aeronautics and Astronautics

Figure 17. LDSD/SIAD Telemetry Visualization Using DSENDS

to tumble in space. The eventual capture mechanism design consisted of a trampoline-like flexible structure
situated within an inflatable capture bag. The trampoline would be pressed up against the target asteroid
using the spacecraft thrusters, thus naturally accommodating the shape and rotation of the asteroid itself
prior to the closing of the bag. The trampoline was represented in DSENDS using a novel, energy-based
model.32 Modeling of earlier iterations of the capture mechanism are described in Grip et al., 2014.3

Figure 19. Asteroid Capture Testbed. DSENDS was used
in real-time to emulate a zero-G environment.

The ARRM DSENDS simulation was also used
as part of a hardware-in-the-loop zero-gravity
testbed designed for validation of the capture con-
cept as shown in Figure 19. The testbed itself con-
sisted of a stationary capture mechanism and an as-
teroid mounted on a robotic arm. DSENDS was
used in real-time to simulate and visualize the mo-
tion of the the spacecraft and asteroid in zero grav-
ity; the simulated trajectory of the asteroid relative
to the spacecraft was used to prescribe the motion
of the physical asteroid in the testbed. The reaction
forces and torques between the spacecraft and the
asteroid were measured using a force-torque sensor
at the base of the capture mechanism; these were fed back into the DSENDS simulation and used to prop-
agate the state. In this way, the approximate model of the flexible trampoline was replaced by a physical
implementation of the trampoline. Details of the testbed are described in an earlier paper.3

V. Broader applications to future missions

DSENDS is currently being used at JPL to analyze flight vehicle performance and guidance, navigation,
and control performance for various space applications, and in the future we will be deploying DSENDS for
Uncertainty Quantification (UQ) and Sensitivity Analysis (SA) of vehicle performance in all project phases
(proposal through flight operations). We currently are developing Entry, Descent, and Landing models and
analysis techniques to include new terrain sensor types (most notably computer vision and LIDAR terrain
sensing) and also new trajectory profiles, like supersonic retro propulsion which may or may not require
deploy-able aerodynamic decelerator technologies (parachutes, SIADs, etc.). DSENDS is also deployed in

16 of 18

American Institute of Aeronautics and Astronautics

system-level UQ and SA for Mars Ascent Vehicle system design, using new design exploration tools such as
DAKOTA33 to move beyond Monte Carlo techniques.

We will continue to work with our NASA partners at other centers who develop aerodynamic, aerothermal,
and environmental models for various vehicles and applications, and continue to collaborate in independent
Verification and Validation of flight missions, such as InSight, Mars 2020, and potential Europa Lander.
Some of these missions and mission concepts include the integration of GNC flight software, leveraging the
experience of Mars Science Laboratory, on which DSENDS played a key EDL targeting and high fidelity
V&V simulation role, which continues into the Mars 2020 lander mission. DSENDS has been compared
with POST2 at LaRC for the MSL, LDSD, and Mars 2020 projects as well as the STAMPS tool at JSC for
independent Verification and Validation of system-level flight dynamics performance.

Missions will continue to use the DSENDS visualization engine for development and flight operations,
and we also have been starting to use DSENDS for the simulation engine to generate image inputs from
simulated trajectories to hardware-accelerated computer vision systems, like the Lander Vision System on
Mars 2020. Both EDL and Small Body Proximity Operations proposals are currently being developed that
will leverage this technology as well. Program offices often ask for concept development in the areas of EDL
and Proximity Operations, and DSENDS provides a capable environment to support technology research
and development and mission proposal formulation. DSENDS is an indispensable tool that can live at all
fidelity levels, making it well suited for use in all phases of the project life cycle.

Looking to the future, we plan to include DSENDS engine as a core analytical tool leveraging the Python
development environment and the Python scientific computing community to provide new ways to answer
questions for our projects and programmatic customers. Incorporating tools developed at our national
laboratories like DAKOTA and in the open source community like the SciPy34 stack, Jupyter35 notebooks,
and HDF5 data storage are all areas of active development where we are using DSENDS to streamline
analysis and improve analysis products for our current and future customers.

VI. Conclusion

In this paper, we have described key underlying components of the DSENDS simulation framework and
have shown how each component contributes to making DSENDS a powerful and flexible simulation and
analysis tool. The modeling functionality that DSENDS supports is suitable for designing and implementing
space flight involving complex systems at various levels of fidelity as illustrated by the variety of applications
of DSENDS to NASA missions and flight experiments described in the paper.

Although this paper has focused on DSENDS for aerospace applications, DSENDS is part of a family
of simulation tools based on the Dshell simulation framework. Other tools in the family are being used for
ground vehicle simulations36 and protein folding.37 These tools are all based on the same infrastructure and
are interoperable.

Acknowledgments

The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under
a contract with the National Aeronautics and Space Administration. The authors thank the COMPASS
team of the Flight Operations Directorate at Johnson Space Center for their support and collaboration.

References

1Balaram, J., Austin, R., Banerjee, P., Bentley, T., Henriquez, D., Martin, B., McMahon, E., and Sohl, G., “DSENDS
- A High-Fidelity Dynamics and Spacecraft Simulator for Entry, Descent and Surface Landing,” IEEE 2002 Aerospace Conf.,
Big Sky, Montana, mar 2002.

2Wilcox, B., San Martin, M., Giersch, L., Howe, S., Grip, H. F., Nayeri, R., Litwin, T., Carlson, J., Shekels, M., Jain, A.,
Lim, C., Myint, S., Dunkle, J., Sirota, A., and Fuller, C., “Testbed for Studying the Capture of a Small, Free-flying Asteroid
in Space,” AIAA Space Conference, Pasadena, CA, 2015.

3Grip, H., Ono, M., Balaram, J., J., C., Jain, A., Kuo, C., Myint, S., and Quadrelli, M., “Modeling and Simulation of
Asteroid Retrieval Using a Flexible Capture Mechanism,” Proc. 2014 IEEE Aerospace Conference, Big Sky, Montanna, 2014.

4Lim, C. and Jain, A., “Dshell++: A Component Based, Reusable Space System Simulation Framework,” Third Interna-
tional Conference on Space Mission Challenges for Information Technology (SMC-IT 2009), Pasadena, CA, jul 2009.

5Jain, A., “Structure Based Modeling and Computational Architecture for Robotic Systems,” 2013 IEEE International
Conference on Robotics and Automation, 2013.

17 of 18

American Institute of Aeronautics and Astronautics

6Cameron, J. M., Myint, S., Kuo, C., Jain, A., Grip, H. F., Jayakumar, P., and Overholt, J., “Real-Time and High-Fidelity
Simulation Environment for Autonomous Ground Vehicle Dynamics,” 2013 NDIA Ground Vehicle Systems Engineering and
Technology Symposium, Troy, Michigan, 2013.

7“http://dartslab.jpl.nasa.gov,” .
8Jain, A., Robot and Multibody Dynamics: Analysis and Algorithms, Springer, 2011.
9Jain, A., “Multibody graph transformations and analysis Part II: Closed-chain constraint embedding,” Nonlinear Dy-

namics, Vol. 67, No. 3, aug 2012, pp. 2153–2170.
10Jain, A., Cameron, J., Lim, C., and J., G., “SimScape Terrain Modeling Toolkit,” Second International Conference on

Space Mission Challenges for Information Technology (SMC-IT 2006), July 2006.
11“https://www.hdfgroup.org/HDF5,” .
12“http://www.ogre3d.org,” .
13“http://bulletphysics.org,” .
14Myint, S., Jain, A., Cameron, J. M., and Lim, C., “Large Terrain Modeling and Visualization for Planets,” Fourth IEEE

International Conference on Space Mission Challenges for Information Technology, San Francisco, CA, 2011.
15“http://www.swig.org,” .
16Bowes, A. and et al., “LDSD POST2 Simulation and SFDT-1 Pre-Flight Launch Operations Analyses,” 25th AAS/AIAA

Space Flight Mechanics Meeting (AAS 15-232), Williamsburg, VA, January 11-15 2015.
17“For more information about the COMPASS program, see https://re.grc.nasa.gov/compass/ and https://www-

robotics.jpl.nasa.gov/tasks/showTask.cfm?FuseAction=ShowTask&TaskID=209&tdaID=700018,” .
18Way, D., “Preliminary Assessment of the Mars Science Laboratory Entry, Descent, and Landing Simulation,” Proceedings

2013 IEEE Aerospace Conference, March 2-6 2013.
19Striepe, S., Way, D., Dwyer, A., and Balaram, J., “Mars Science Laboratory Simulations for Entry, Descent, and Landing,”

Journal of Spacecraft and Rockets, Vol. 43, No. 2, March-April 2006.
20Burkhart, P. D., Casoliva, J., and Balaram, B., “Mars Science Laboratory Entry Descent and Landing Simulation Using

DSENDS,” Journal of the American Astronomical Society (AAS 13-421), 2013.
21Burkhart, P. D. and Casoliva, J., “MSL DSENDS EDL Analysis and Operations,” Proceedings 2012 International Sym-

posium for Space Flight Dynamics, 2012.
22Pomerantz, M., Lim, C., Myint, S., Woodward, G., and Kuo, C., “Multi-Mission Simulation and Visualization for

Real-time Telemetry Display, Playback and EDL Event Reconstruction,” 2012 AIAA Space, Pasadena, CA, 2012.
23Bonfiglio, E., Adams, D., Craig, L., Spencer, D., Arvidson, R., and Heet, T., “Landing-Site Dispersion Analysis and

Statistical Assessment for the Mars Phoenix Lander,” Journal of Spacecraft and Rockets, Vol. 48, No. 5, 2012, pp. 784–797.
24Prince, J., Desai, P., Queen, E., and Grover, M., “Mars Phoenix Entry, Descent, and Landing Simulation Design and

Modeling Analysis,” Journal of Spacecraft and Rockets, Vol. 48, No. 5, 2011, pp. 756–764.
25Prince, J., Desai, P., Queen, E., and Grover, M., “Entry, Descent, and Landing Operations Analysis for the Mars Phoenix

Lander,” Journal of Spacecraft and Rockets, Vol. 48, No. 5, 2011, pp. 778–783.
26Queen, E., Prince, J., and Desai, P., “Mars Phoenix Entry, Descent, and Landing,” Journal of Spacecraft and Rockets,

Vol. 48, No. 5, 2011, pp. 765–771.
27Desai, P., Prince, J., Queen, E., Schoenenberger, M., Cruz, J., and Grover, M., “Entry, Descent, and Landing Performance

of the Mars Phoenix Lander,” Journal of Spacecraft and Rockets, Vol. 48, No. 5, 2011, pp. 798–808.
28“http://monte.jpl.nasa.gov,” .
29Evans, S., Taber, W., Drain, W., Smith, J., Wu, H.-C., Guevara, M., Sunseri, R., and Evans, J., “MONTE: The Next

Generation of Mission Design & Navigation Software,” Proceedings of the 6th International Conference on Astrodynamics Tools
and Techniques (ICATT), Proceedings Darmstadt, Germany, 2016.

30Sunseri, R., Wu, H.-C., Evans, S., Evans, J., Drain, T., , and Guevara, M., “Mission Analysis, Operations, and Navigation
Toolkit Environment (MONTE) Version 040,” NASA Tech Briefs, Vol. 36, No. 9, 2012.

31Ivanov, M., “Low Density Supersonic Decelerator Flight Dynamics Test - 1 Flight Design and Targeting,” Proceedings of
the 23rd AIAA Aerodynamic Decelerator Systems Technology Conference, Daytona Beach, FL, April 2015.

32Grip, H. F., San Martin, M., Jain, A., Balaram, J., Cameron, J. M., and Myint, S., “Modeling and Simulation of Asteroid
Capture using a Deformable Membrane Capture Device,” Proceedings of the ASME 2015 International Design Engineering
Technical Conferences & Computers and Information in Engineering Conference, Boston, MA, 2015.

33“https://dakota.sandia.gov,” .
34“https://www.scipy.org,” .
35“http://jupyter.org,” .
36Cameron, J., Myint, S., Kuo, C., Jain, A., Grip, H., Paramsothy, J., and Overholt, J., “Real-Time and High-Fidelity

Simulation Environment for Autonomous Ground Vehicle Dynamics,” 2013 NDIA Ground Vehicle Systems Engineering and
Technology Symposium, Troy, Michigan, Aug 21-22 2013.

37Larsen, A. B., Wagner, J. R., Kandel, S., Salomon-Ferrer, R., Vaidehi, N., and Jain, A., “GneimoSim: A modular
internal coordinates molecular dynamics simulation package,” Journal of Computational Chemistry, Vol. 35, No. 31, 2014,
pp. 2245–2255.

18 of 18

American Institute of Aeronautics and Astronautics

